In set theory, a limit ordinal is an ordinal number that is neither zero nor a successor ordinal. Alternatively, an ordinal λ is a limit ordinal if there is an ordinal less than λ, and whenever β is an ordinal less than λ, then there exists an ordinal γ such that β < γ < λ. Every ordinal number is either zero, a successor ordinal, or a limit ordinal.
For example, the smallest limit ordinal is ω, the smallest ordinal greater than every natural number. This is a limit ordinal because for any smaller ordinal (i.e., for any natural number) n we can find another natural number larger than it (e.g. n+1), but still less than ω. The next-smallest limit ordinal is ω+ω. This will be discussed further in the article.
Using the von Neumann definition of ordinals, every ordinal is the well-ordered set of all smaller ordinals. The union of a nonempty set of ordinals that has no greatest element is then always a limit ordinal. Using von Neumann cardinal assignment, every infinite cardinal number is also a limit ordinal.
Some contention exists on whether or not 0 should be classified as a limit ordinal, as it does not have an immediate predecessor; some textbooks include 0 in the class of limit ordinalsfor example, Thomas Jech, Set Theory. Third Millennium edition. Springer. while others exclude it.for example, Kenneth Kunen, Set Theory. An introduction to independence proofs. North-Holland.
In general, all of these recursive definitions via multiplication, exponentiation, repeated exponentiation, etc. yield limit ordinals. All of the ordinals discussed so far are still countable ordinals. However, there is no recursively enumerable scheme for ordinal notation all ordinals less than the Church–Kleene ordinal, which is a countable ordinal.
Beyond the countable, the first uncountable ordinal is usually denoted ω1. It is also a limit ordinal.
Continuing, one can obtain the following (all of which are now increasing in cardinality):
In general, we always get a limit ordinal when taking the union of a nonempty set of ordinals that has no maximum element.
The ordinals of the form ω²α, for α > 0, are limits of limits, etc.
If we use the von Neumann cardinal assignment, every infinite cardinal number is also a limit ordinal (and this is a fitting observation, as cardinal derives from the Latin cardo meaning hinge or turning point): the proof of this fact is done by simply showing that every infinite successor ordinal is equinumerous to a limit ordinal via the Hotel Infinity argument.
Cardinal numbers have their own notion of successorship and limit (everything getting upgraded to a higher level).
A limit ordinal α is called additively indecomposable if it cannot be expressed as the sum of β < α ordinals less than α. These numbers are any ordinal of the form for β an ordinal. The smallest is written , the second is written , etc.
Multiplicatively indecomposable
A limit ordinal α is called multiplicatively indecomposable if it cannot be expressed as the product of β < α ordinals less than α. These numbers are any ordinal of the form for β an ordinal. The smallest is written , the second is written , etc.
Exponentially indecomposable and beyond
The term "exponentially indecomposable" does not refer to ordinals not expressible as the exponential product (?) of β < α ordinals less than α, but rather the epsilon numbers, "tetrationally indecomposable" refers to the zeta numbers, "pentationally indecomposable" refers to the eta numbers, etc.
|
|